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Bayesian Analysis

•Construct a prior distribution on a parameter 

(which might be a parameter of a distribution)

• The prior distribution should be based on 

previous experience, engineering judgment

• The distribution on the prior is updated with 

actual data.  The resulting updated distribution is 

called the posterior. 

Uses probability theory, treats θ as 

a random variable

Estimates θ with some confidence 

interval

Assumes a distribution on unknown 

parameter θ

Assumes there is an unknown but 

fixed parameter θ

BayesianFrequentist



Bayesian Analysis

• Why would we use it for CS&E problems? 

• Nice feature of incorporating additional data as it becomes 

available

• We often don’t have good estimates:  Bayes provides a 

framework for starting with what we do know, and refining 

our estimates in a statistically consistent manner

• Examples:

– Reliability problems: Update probability of failure

– Response surfaces:  Update parameters in a surrogate 

model for a trust region

– Calibration under Uncertainty (CUU):  Update our parameter 

estimates based on experimental data AND uncertainty in a 

model



Bayesian Methods

Discrete Case

where θ is a parameter(s), x is a data vector, and p is 

a probability mass function. 
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Examples

• Use Binomial distribution to model the number of failures, x, in n trials. 

• We obtain data that shows 2 failures in 5 trials

• The posterior distribution reflects the fact that in this set of data, 
θ = 0.4 which is closer to 0.3 than 0.6 and so the probability of
θ=0.3 has risen slightly.
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P{θ=0.6}=0.87P{θ=0.6}=0.9

P{θ=0.3}=0.13P{θ=0.3}=0.1

Posterior ProbabilityPrior Probability 



FirstBayes Software

The dataset is a string of ones and zeros, representing the failure or 
success of the Rosenbrock function, where failure is defined as a function 
value > 1000 over the input range                         .  Approximately 10% of 
the points “fail” according to this threshold.
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FirstBayes Software

If instead we take a prior that is “non-informative” (but still has a mean of 
0.1), the prior has a much larger variance and so doesn’t influence the 
posterior as much.  Notice that the posterior is much closer to the likelihood 
function.



How are posterior distributions calculated?

• In the case of conjugate pairs, one can analytically 

calculate the posterior distribution

• Most cases are too difficult to calculate analytically, 

thus we need to go to a sampling method

• Most popular approach is called Markov Chain Monte 

Carlo (MCMC)

• In MCMC, the idea is to generate a sampling density 

that is approximately equal to the posterior.  We want 

the sampling density to be the stationary distribution 

of a Markov chain.  



Markov Chain Monte Carlo 

• How do we generate the Markov chain with the 

stationary probability that we want? 

• Construct a transition probability that will get you 

there

• Metropolis-Hastings and Gibbs sampling are the 

most commonly used algorithms

• Both have the idea of a “proposal density” which is 

used for generating Xi+1 in the sequence, conditional 

on Xi. The proposal density is often denoted as 

QY(Y|Xi)



Metropolis-Hasting

• Basic method:  generate a proposed sample from Q, calculate 
acceptance rate, calculate random number to see if candidate is 
accepted

• Issues:

– Does Q, the proposal density, need a special form? 

• Symmetric Q(X|Y)=Q(Y|X).

• Independent Q(Y|X)=Q(Y|)

– How long do you run the chain, how do you know when it is 
converged, how long is the burn-in period, etc.?

– ACCEPTANCE RATE is CRITICAL. Need to tune Q to get an 
“optimal” acceptance rate, 45-50% for 1-D problems, 23-26% for 
high dimensional problems

– COMPUTATIONALLY VERY EXPENSIVE!!!!!!

α(X,Y ) =min(1,
fX (Y )qY(Y | Xi)

fX (X)qX(X i | Y )
)



BUGS and YADAS: Posterior distribution

Markov Chain for posterior distribution of p 

(Probability of Failure in Binomial Model)
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• It works best if your prior is well-defined and close to 
the posterior. 

• It is very difficult to tell if the chain has converged to the 
“true” underlying posterior

• It requires substantial statistical knowledge to formulate 
the posterior “proposal” distribution correctly

• Each problem requires tuning of the parameters that 
govern the Markov chain generation – step sizes, 
“leaping” parameters, etc.

Observations about MCMC



Some concerns about Bayes

• The Bayesian framework allows one to integrate 

observed data and prior knowledge:  conceptually 

very nice.  

• It won’t work well in cases where there is very little 

data or lots of data: optimum is where we have some 

data that is likely to be added to over time.

• In the context of many CS&E problems, we need to 

seriously question the usefulness of the Bayesian 

approach.  



Example CS&E Bayesian Applications

• Estimation of probability of failure 

• Estimation of hyperparameters that govern a surrogate 
model in a trust region or over the entire surface 

• Experience with a linear regression model: 

• Bayesian estimates for mean of ββββ and for σσσσ2 are the same as those 
obtained by classical regression or by Maximum likelihood 
estimates

– What does the Bayesian framework buy us?  Are we really 
going to sample from values of the posterior of β β β β to use in a 
simulation?   

• Multi-level surrogates
• Can we construct a surrogate based on a few high-resolution 
function evaluations, then update it with many low-resolution 
function evaluations or vice-versa?  This is a promising area. 

Li 0 1 i1 k ikE[y ] β +β X + +β X|β,X =



Bayesian Regression

• The parameter vector we are trying to estimate is: 

θ = (ββββ,σ2) = (β0, β1, … , βk, σ
2).  

• The key assumption in a Bayesian formulation of regression is that 
there is a distribution on θ, and that the posterior distribution of θ is 
given by:  

p(θ|X,y)∝ p(θ)p(y|X, θ)
• With a noninformative prior θ, the conditional posterior of ββββ given 

σ2 is normal:

• The marginal posterior density of σ2 given the data is an inverse χ2

distribution: σ2 | y ~ inverse χ2 (n-k, s2)

• The predicted outcome ŷ can be drawn directly from a multivariate-
t, with center     , squared scale matrix                       , and (n-k) 
degrees of freedom.
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Bayesian Regression Example



Bayesian Regression Example

betabest =

-83.7303

-1.9199

-14.6057

-13.7867

betapost =

-84.9806   -1.8589  -15.0115  -13.6536

-81.5903   -2.0193  -14.6206  -14.0590

-86.1574   -1.7978  -14.3796  -13.8155

-87.1254   -1.7450  -14.4879  -13.5610

-83.4898   -1.9278  -14.9434  -13.9248

-84.3119   -1.8625  -13.6025  -14.6832

-83.0762   -1.9515  -14.5526  -13.6314

-85.4060   -1.8570  -14.4533  -13.6969

-84.1351   -1.9042  -14.1771  -14.0882

-84.0462   -1.8918  -14.4630  -13.5398

-83.8104   -1.9166  -14.8050  -13.8323

-82.2354   -2.0130  -14.7307  -14.2078

-82.4147   -1.9722  -14.1570  -14.2643



Bayesian Regression

• Allows one to calculate families of linear response models, and 
generate predictions based on the posterior density (which 
incorporates the error in the regression PLUS the uncertainty in
the parameters).   

• Can be used in uncertainty analysis, ensemble calculation, 
applications where we want to calculate threshold probabilities

• Can be used in surrogate modeling

• Pros:  Formulation allows for an analytic solution to the 
regression parameter posterior distributions.  

• Our next research steps: 
– Look at the use of Bayesian regression in multi-fidelity surrogate 
modeling.  Issue:  Need to have “problem matching” between the low 
and high fidelity

– Maximize posterior density with respect the design variables of being in 
some region A: 

posterior(x) = P(y∈A|x,data)

– Can do this without Bayesian approach, but have more accurate 
representation of uncertainty with the posterior density 



• Idea:  Want to account for both experimental uncertainty AND 

model uncertainty in the determination of model parameter values

• Building on the work of Kennedy and O’Hagan.

• Formulate a relationship between observations, “true” process, and model 

output as:  zi = ζ(xi) + ei = ρ η(xi,ti) + δ(xi) + ei
z is the observed data, 

t is the observed value of parameters θ, 

ei is the observation error for the i
th observation, 

ρ is an unknown regression parameter, 

δ(x) is a model discrepancy or model inadequacy function 

• η(xi,ti) and δ(xi) are Gaussian process models.  They are distributed with a 
mean and variance which are functions: e.g., η(xi,ti) ~ N (h(x)

Tβ, c(x, x’)) where 

the covariance is often given as: 

Calibration under Uncertainty
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Calibration Under Uncertainty

• Calibration involves calculating a very complicated 

joint pdf on all of these parameters: ρ, σ, ω, h terms, 

β, λ, and θ.  

• Approach is to fix some of these terms, and estimate 

others.  Even KOH admit at this point, this is not 

readily tractable. 

• The “updating” does not have to be Bayesian – one 

could use Maximum likelihood as Dennis Cox at Rice 

does.  This removes problems with generation of the 

posterior distribution. 

• Whole approach is HIGHLY parameterized.



Model Discrepancy Term

• Most useful concept in KOH work is the representation of the 
model discrepancy term as a random field

• Instead of constructing 2 emulators, just use one GP: 

KOH:  zi= ρ η(xi,ti) + δ(xi) + ei
SNL:   zi= CodeRuns + δ(xi) + ei

• If we represent δ as a GP, how do we update the 
hyperparameters governing it?  I am using MLE, not a Bayesian 
approach.

• MCMC is difficult to implement for multivariate cases and 
computationally expensive (because you need to do function 
evaluations in the acceptance or rejection of the proposed 
posterior distributions)

• If we replace the emulator with the actual code runs, we give up
some flexibility and possibly calibration potential.  However, it 
offers the possibility of being able to calibrate the code 
parameters directly � MY NEXT STEP



CUU Example

• Heat conduction example, want to predict temperature as a function of time

• Delta (in degrees) is a strong function of time

• GP mean (shown in green) was “corrected” by subtracting the regression term shown 

in red

• In this case, the GP updating doesn’t buy you much, since the GP reverts back to a 

zero mean, constant variance process

• Next steps:  Looking at making the delta term a function of the model parameters



Conclusions

• Bayesian methods have a place in CS&E problems

• Need to be careful about what you claim as 

“Bayesian updating”

• Most natural applications are probability of failure 

estimation, Bayesian regression, and updating 

surrogate model parameters

• Major difficulty is generating a posterior distribution

• Even if one can develop a reasonable MCMC model, 

it will require a lot of function evaluations to generate 

the posterior � too computationally expensive for 

high-fidelity models
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